Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.124
Filtrar
1.
Br J Haematol ; 204(4): 1344-1353, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479427

RESUMO

This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Deleção de Genes , Fator de Transcrição Ikaros/genética , Recidiva Local de Neoplasia , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Medição de Risco , Fatores de Transcrição , Lactente , Pré-Escolar , Adolescente
2.
Sci Rep ; 14(1): 6400, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493200

RESUMO

Leukaemia of various subtypes are driven by distinct chromosomal rearrangement or genetic abnormalities. The leukaemogenic fusion transcripts or genetic mutations serve as molecular markers for minimal residual disease (MRD) monitoring. The current study evaluated the applicability of several droplet digital PCR assays for the detection of these targets at RNA and DNA levels (atypical BCR::ABL1 e19a2, e23a2ins52, e13a2ins74, rare types of CBFB::MYH11 (G and I), PCM1::JAK2, KMT2A::ELL2, PICALM::MLLT10 fusion transcripts and CEBPA frame-shift and insertion/duplication mutations) with high sensitivity. The analytical performances were assessed by the limit of blanks, limit of detection, limit of quantification and linear regression. Our data demonstrated serial MRD monitoring for patients at molecular level could become "digitalized", which was deemed important to guide clinicians in treatment decision for better patient care.


Assuntos
Neoplasias Hematológicas , Leucemia , Humanos , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Reação em Cadeia da Polimerase , Leucemia/diagnóstico , Aberrações Cromossômicas , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Fatores de Elongação da Transcrição/genética
3.
Hematol Oncol ; 42(2): e3264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461410

RESUMO

In addition to RUNX1::RUNX1T1 transcript levels, measurable residual disease monitoring using KIT mutant (KITmut ) DNA level is reportedly predictive of relapse in t (8; 21) acute myeloid leukemia (AML). However, the usefulness of KITmut transcript levels remains unknown. A total of 202 bone marrow samples collected at diagnosis and during treatment from 52 t (8; 21) AML patients with KITmut (D816V/H/Y or N822K) were tested for KITmut transcript levels using digital polymerase chain reaction. The individual optimal cutoff values of KITmut were identified by performing receiver operating characteristics curve analysis for relapse at each of the following time points: at diagnosis, after achieving complete remission (CR), and after Course 1 and 2 consolidations. The cutoff values were used to divide the patients into the KITmut -high (KIT_H) group and the KITmut -low (KIT_L) group. The KIT_H patients showed significantly lower relapse-free survival (RFS) and overall survival (OS) rates than the KIT_L patients after Course 1 consolidation (p = 0.0040 and 0.021, respectively) and Course 2 consolidation (p = 0.018 and 0.011, respectively) but not at diagnosis and CR. The <3-log reduction in the RUNX1::RUNX1T1 transcript levels after Course 2 consolidation was an independent adverse prognostic factor for RFS and OS. After Course 2 consolidation, the KIT_H patients with >3-log reduction in the RUNX1::RUNX1T1 transcript levels (11/45; 24.4%) had similar RFS as that of patients with <3-log reduction in the RUNX1::RUNX1T1 transcript levels. The combination of KITmut and RUNX1::RUNX1T1 transcript levels after Course 2 consolidation may improve risk stratification in t (8; 21) AML patient with KIT mutation.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-kit , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/genética , 60410 , Prognóstico , Recidiva , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética , Proteínas Proto-Oncogênicas c-kit/genética
4.
J Mol Diagn ; 26(4): 233-244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307253

RESUMO

Chimerism testing supports the study of engraftment and measurable residual disease (MRD) in patients after allogeneic hematopoietic stem cell transplant. In chimerism MRD, relapse can be predicted by increasing mixed chimerism (IMC), recipient increase ≥0.1% in peripheral blood, and proliferating recipient cells as a surrogate of tumor activity. Conventionally, the combination of short-tandem repeat (STR) and quantitative PCR (qPCR) was needed to ensure assay sensitivity and accuracy in all chimerism status. We evaluated the use of next-generation sequencing (NGS) as an alternate technique. The median numbers of informative markers in unrelated/related cases were 124/82 (NGS; from 202 single-nucleotide polymorphism), 5/3 (qPCR), and 17/10 (STR). Assay sensitivity was 0.22% (NGS), 0.1% (qPCR), and 1% (STR). NGS batch (4 to 48 samples) required 19.60 to 24.80 hours and 1.52 to 2.42 hours of hands-on time (comparable to STR/qPCR). NGS assay cost/sample was $91 to $151, similar to qPCR ($99) but higher than STR ($27). Using 56 serial DNAs from six post-transplant patients monitored by the qPCR/STR, the correlation with NGS was strong for percentage recipient (y = 1.102x + 0.010; R2 = 0.968) and percentage recipient change (y = 0.892x + 0.041; R2 = 0.945). NGS identified all 17 IMC events detected by qPCR (100% sensitivity). The NGS chimerism provides sufficient sensitivity, accuracy, and economical/logistical feasibility in supporting engraftment and MRD monitoring.


Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Recidiva Local de Neoplasia , Repetições de Microssatélites , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Reação em Cadeia da Polimerase/métodos , Sequenciamento de Nucleotídeos em Larga Escala
5.
Front Biosci (Landmark Ed) ; 29(2): 86, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38420833

RESUMO

The term 'liquid biopsy' has become widely used by clinicians with the development of non-invasive diagnostic and monitoring techniques for malignancies. Liquid biopsy can provide genetic information for early diagnosis, risk stratification, treatment selection and postoperative follow-up. In the era of personalized medicine, liquid biopsy is an important research direction. In recent years, research on circulating tumour DNA (ctDNA) in hematological malignancies has also made great progress. This review provides an overview of the current understanding of circulating tumour DNA in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Additionally, recent advancements in the monitoring of minimal/measurable residual disease (MRD) through ctDNA are discussed.


Assuntos
DNA Tumoral Circulante , Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , DNA Tumoral Circulante/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética
6.
Ann Lab Med ; 44(3): 195-209, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38221747

RESUMO

Circulating tumor DNA (ctDNA) has emerged as a promising tool for various clinical applications, including early diagnosis, therapeutic target identification, treatment response monitoring, prognosis evaluation, and minimal residual disease detection. Consequently, ctDNA assays have been incorporated into clinical practice. In this review, we offer an in-depth exploration of the clinical implementation of ctDNA assays. Notably, we examined existing evidence related to pre-analytical procedures, analytical components in current technologies, and result interpretation and reporting processes. The primary objective of this guidelines is to provide recommendations for the clinical utilization of ctDNA assays.


Assuntos
DNA Tumoral Circulante , Humanos , DNA Tumoral Circulante/genética , Biomarcadores Tumorais/genética , Prognóstico , Neoplasia Residual/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
7.
Eur J Haematol ; 112(4): 601-610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197567

RESUMO

INTRODUCTION: Follow-up after allogeneic transplantation in acute myeloid leukaemia (AML) is guided by measurable residual disease (MRD) testing. Quantitative polymerase chain reaction (qPCR) is the preferred MRD platform but unfortunately, 40%-60% of AML patients have no high-quality qPCR target. This study aimed to improve MRD testing by utilising droplet digital PCR (ddPCR). ddPCR offers patient-specific monitoring but concerns of tracking clonal haematopoiesis rather than malignant cells prompt further validation. METHODS: Retrospectively, we performed MRD testing on blood and bone marrow samples from AML patients transplanted by reduced-intensity conditioning. RESULTS: The applicability of ddPCR was 39/42 (92.9%). Forty-five ddPCR assays were validated with a 0.0089% median sensitivity. qPCR targeting NPM1 mutation detected relapse 46 days before ddPCR (p = .03). ddPCR detected relapse 34.5 days before qPCR targeting WT1 overexpression (p = .03). In non-relapsing patients, zero false positive ddPCR MRD relapses were observed even when monitoring targets associated with clonal haematopoiesis such as DNMT3A, TET2, and ASXL1 mutations. CONCLUSION: These results confirm that qPCR targeting NPM1 mutations or fusion transcripts are superior in MRD testing. In the absence of such targets, ddPCR is a promising alternative demonstrating (a) high applicability, (b) high sensitivity, and (c) zero false positive MRD relapses in non-relapsing patients.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Estudos Retrospectivos , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Reação em Cadeia da Polimerase/métodos , Doença Crônica , Recidiva , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética
8.
Clin Cancer Res ; 30(6): 1143-1151, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38170574

RESUMO

PURPOSE: Patient-tailored minimal residual disease (MRD) monitoring based on circulating tumor DNA (ctDNA) sequencing of leukemia-specific mutations enables early detection of relapse for pre-emptive treatment, but its utilization in pediatric acute myelogenous leukemia (AML) is scarce. Thus, we aim to examine the role of ctDNA as a prognostic biomarker in monitoring response to the treatment of pediatric AML. EXPERIMENTAL DESIGN: A prospective longitudinal study with 50 children with AML was launched, and sequential bone marrow (BM) and matched plasma samples were collected. The concordance of mutations by next-generation sequencing-based BM-DNA and ctDNA was evaluated. In addition, progression-free survival (PFS) and overall survival (OS) were estimated. RESULTS: In 195 sample pairs from 50 patients, the concordance of leukemia-specific mutations between ctDNA and BM-DNA was 92.8%. Patients with undetectable ctDNA were linked to improved OS and PFS versus detectable ctDNA in the last sampling (both P < 0.001). Patients who cleared their ctDNA post three cycles of treatment had similar PFS compared with persistently negative ctDNA (P = 0.728). In addition, patients with >3 log reduction but without clearance in ctDNA were associated with an improved PFS as were patients with ctDNA clearance (P = 0.564). CONCLUSIONS: Thus, ctDNA-based MRD monitoring appears to be a promising option to complement the overall assessment of pediatric patients with AML, wherein patients with continuous ctDNA negativity have the option for treatment de-escalation in subsequent therapy. Importantly, patients with >3 log reduction but without clearance in ctDNA may not require an aggressive treatment plan due to improved survival, but this needs further study to delineate.


Assuntos
DNA Tumoral Circulante , Leucemia Mieloide Aguda , Humanos , Criança , DNA Tumoral Circulante/genética , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Estudos Prospectivos , Estudos Longitudinais , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Medição de Risco , Biomarcadores Tumorais/genética
9.
Cancer Genet ; 282-283: 27-34, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183785

RESUMO

The current genomic abnormalities provide prognostic value in pediatric Acute Lymphoblastic Leukemia (ALL). Furthermore, Copy Number Alteration (CNA) has recently been used to improve the genetic risk stratification of patients. This study aimed to evaluate CNA profiles in BCR-ABL1-negative pediatric B-ALL patients and correlate the data with Minimal Residual Disease (MRD) results after induction therapy. We examined 82 bone marrow samples from pediatric BCR-ABL1-negative B-ALL using the MLPA method for the most common CNAs, including IKZF1, CDKN2A/B, PAX5, RB1, BTG1, ETV6, EBF1, JAK2, and PAR1 region. Subsequently, patients were followed-up by multiparameter Flow Cytometry for MRD (MFC-MRD) assessment on days 15 and 33 after induction. Data showed that 58.5 % of patients carried at least one gene deletion, whereas 41.7 % of them carried more than one gene deletion simultaneously. The most frequent gene deletions were CDKN2A/B, ETV6, and IKZF1 (30.5 %, 14.6 %, and 14.6 %, respectively), while the PAR1 region showed predominantly duplication (30.5 %). CDKN2A/B and IKZF1 were related to positive MRD results on day 15 (p = 0.003 and p = 0.007, respectively). The simultaneous presence of more than one deletion was significantly associated with high induction failure (p = 0.001). Also, according to the CNA profile criteria, the CNA with poor risk (CNA-PR) profile was statistically associated with older age and positive MRD results on day 15 (p = 0.014 and p = 0.013, respectively). According to our results, the combined use of CNAs with MRD results on day 15 can predict induction failure and be helpful in ameliorating B-ALL risk stratification and treatment approaches.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Variações do Número de Cópias de DNA/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Neoplasia Residual/genética , Receptor PAR-1/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Fatores de Transcrição/genética
10.
Clin. transl. oncol. (Print) ; 26(1): 278-287, jan. 2024.
Artigo em Inglês | IBECS | ID: ibc-229166

RESUMO

Introduction Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Measurable residual disease (MRD, previously named minimal residual disease) study can guide therapy adjustments or preemptive interventions that might avoid hematological relapse. Methods Clinical decision making and patient outcome were evaluated in 80 real-life childhood ALL patients, according to the results observed in 544 bone marrow samples analyzed with three MRD methods: multiparametric flow cytometry (MFC), fluorescent in-situ hybridization (FISH) on B or T-purified lymphocytes and patient-specific nested reverse transcription polymerase chain reaction (RT-PCR). Results Estimated 5 year overall survival and event-free survival were 94% and 84.1%, respectively. A total of 12 relapses in 7 patients were associated with positive MRD detection with at least one of the three methods: MFC (p < 0.00001), FISH (p < 0.00001) and RT-PCR (p = 0.013). MRD assessment allowed the anticipation of relapse and adapted early interventions with different approaches including chemotherapy intensification, blinatumomab, HSCT and targeted therapy to halt relapse in five patients, although two of them relapsed afterwards. Conclusion MFC, FISH and RT-PCR are complementary methods for MRD monitoring in pediatric ALL. Although, our data clearly show that MDR positive detection is associated with relapse, continuation of standard treatment, intensification or other early interventions were able to halt relapse in patients with different risks and genetic background. More sensitive and specific methods are warranted to enhance this approach. However, whether early treatment of MRD can improve overall survival in patients with childhood ALL needs to be evaluated in adequately controlled clinical trials (AU)


Assuntos
Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Citometria de Fluxo , Neoplasia Residual/genética , Recidiva Local de Neoplasia
11.
Ann Lab Med ; 44(4): 354-358, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237930

RESUMO

Measurable residual disease (MRD) testing, a standard procedure in B-lymphoblastic leukemia (B-ALL) diagnostics, is assessed using multiparametric flow cytometry (MFC) and next-generation sequencing (NGS) analysis of immunoglobulin gene rearrangements. We evaluated the concordance between eight-color, two-tube MFC-MRD the LymphoTrack NGS-MRD assays using 139 follow-up samples from 54 pediatric patients with B-ALL. We also assessed the effect of hemodilution in MFC-MRD assays. The MRD-concordance rate was 79.9% (N=111), with 25 (18.0%) and 3 (2.2%) samples testing positive only by NGS-MRD (MFC-NGS+MRD) and MFC-MRD (MFC+NGS-MRD), respectively. We found a significant correlation in MRD values from total nucleated cells between the two methods (r=0.736 [0.647-0.806], P<0.001). The median MRD value of MFC-NGS+MRD samples was estimated to be 0.0012% (0.0001%-0.0263%) using the NGS-MRD assays. Notably, 14.3% of MFC-NGS+MRD samples showed NGS-MRD values below the limit of detection in the MFC-MRD assays. The percentages of hematogones detected in MFC-MRD assays significantly differed between the discordant and concordant cases (P<0.001). MFC and NGS-MRD assays showed relatively high concordance and correlation in MRD assessment, whereas the NGS-MRD assay detected MRD more frequently than the MFC-MRD assay in pediatric B-ALL. Evaluating the hematogone percentages can aid in assessing the impact of sample hemodilution.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Citometria de Fluxo/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
13.
JCO Precis Oncol ; 8: e2300127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38237099

RESUMO

PURPOSE: Recurrence after curative-intent treatment occurs in 20%-50% of patients with stage II-IV colorectal cancer (CRC), underscoring the need for early detection of minimal residual disease (MRD) using circulating tumor DNA (ctDNA). Here, we examined the pattern of use of a tumor-informed ctDNA assay in CRC MRD monitoring in routine clinical practice at Mayo Clinic, Rochester. METHODS: We conducted a retrospective analysis of health records of patients with CRC who had at least one tumor-informed ctDNA assay from May 2019 through July 1, 2022. Recurrence was defined as radiographic evidence of disease. Descriptive characteristics of the cohort, ctDNA results, and subsequent interventions were recorded. RESULTS: Of the 120 patients included, the median age at diagnosis was 67 years, 46% were female, and 94% were White. At diagnosis, 10 patients had stage I, 23 stage II, 60 stage III, and 25 stage IV disease. Of 476 ctDNA assays performed, 70% were performed in patients who had recurrent disease most commonly to monitor the effectiveness of therapeutic interventions and 16% resulted in a change in clinical decision making. There were 110 recurrences identified in 62 patients, as some patients experienced more than one recurrence over time. Compared with serum carcinoembryonic antigen levels, ctDNA results correlated better with radiologic imaging. CONCLUSION: Routine ctDNA monitoring for MRD detection has been adopted in clinical practice; however, 84% of ctDNA assays performed did not result in a change in clinical management. This suggests the need for further clinical research data to guide routine clinical use of ctDNA MRD testing in CRC.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Colorretais , Humanos , Feminino , Masculino , DNA Tumoral Circulante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Estudos Retrospectivos , DNA de Neoplasias/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
14.
J Clin Oncol ; 42(12): 1378-1390, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38232336

RESUMO

PURPOSE: Clinical relapse is the major threat for patients with myelodysplastic syndrome (MDS) undergoing hematopoietic stem-cell transplantation (HSCT). Early detection of measurable residual disease (MRD) would enable preemptive treatment and potentially reduced relapse risk. METHODS: Patients with MDS planned for HSCT were enrolled in a prospective, observational study evaluating the association between MRD and clinical outcome. We collected bone marrow (BM) and peripheral blood samples until relapse, death, or end of study 24 months after HSCT. Patient-specific mutations were identified with targeted next-generation sequencing (NGS) panel and traced using droplet digital polymerase chain reaction (ddPCR). RESULTS: Of 266 included patients, estimated relapse-free survival (RFS) and overall survival (OS) rates 3 years after HSCT were 59% and 64%, respectively. MRD results were available for 221 patients. Relapse was preceded by positive BM MRD in 42/44 relapses with complete MRD data, by a median of 71 (23-283) days. Of 137 patients in continuous complete remission, 93 were consistently MRD-negative, 39 reverted from MRD+ to MRD-, and five were MRD+ at last sampling. Estimated 1 year-RFS after first positive MRD was 49%, 39%, and 30%, using cutoff levels of 0.1%, 0.3%, and 0.5%, respectively. In a multivariate Cox model, MRD (hazard ratio [HR], 7.99), WHO subgroup AML (HR, 4.87), TP53 multi-hit (HR, 2.38), NRAS (HR, 3.55), and acute GVHD grade III-IV (HR, 4.13) were associated with shorter RFS. MRD+ was also independently associated with shorter OS (HR, 2.65). In a subgroup analysis of 100 MRD+ patients, presence of chronic GVHD was associated with longer RFS (HR, 0.32). CONCLUSION: Assessment of individualized MRD using NGS + ddPCR is feasible and can be used for early detection of relapse. Positive MRD is associated with shorter RFS and OS (ClinicalTrials.gov identifier: NCT02872662).


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Estudos Prospectivos , Recidiva Local de Neoplasia/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Síndromes Mielodisplásicas/terapia , Recidiva , Doença Enxerto-Hospedeiro/etiologia , Neoplasia Residual/genética , Leucemia Mieloide Aguda/genética , Estudos Retrospectivos , Prognóstico
16.
Haematologica ; 109(3): 740-750, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345487

RESUMO

Pediatric acute myeloid leukemia (AML) is a highly heterogeneous disease making standardized measurable residual disease (MRD) assessment challenging. Currently, patient-specific DNA-based assays are only rarely applied for MRD assessment in pediatric AML. We tested whether quantification of genomic breakpoint-specific sequences via quantitative polymerase chain reaction (gDNA-PCR) provides a reliable means of MRD quantification in children with non-standardrisk AML and compared its results to those obtained with state-of-the-art ten-color flow cytometry (FCM). Breakpointspecific gDNA-PCR assays were established according to Euro-MRD consortium guidelines. FCM-MRD assessment was performed according to the European Leukemia Network guidelines with adaptations for pediatric AML. Of 77 consecutively recruited non-standard-risk pediatric AML cases, 49 (64%) carried a chromosomal translocation potentially suitable for MRD quantification. Genomic breakpoint analysis returned a specific DNA sequence in 100% (41/41) of the cases submitted for investigation. MRD levels were evaluated using gDNA-PCR in 243 follow-up samples from 36 patients, achieving a quantitative range of at least 10-4 in 231/243 (95%) of samples. Comparing gDNA-PCR with FCM-MRD data for 183 bone marrow follow-up samples at various therapy timepoints showed a high concordance of 90.2%, considering a cut-off of ≥0.1%. Both methodologies outperformed morphological assessment. We conclude that MRD monitoring by gDNA-PCR is feasible in pediatric AML with traceable genetic rearrangements and correlates well with FCM-MRD in the currently applied clinically relevant range, while being more sensitive below that. The methodology should be evaluated in larger cohorts to pave the way for clinical application.


Assuntos
Genômica , Leucemia Mieloide Aguda , Humanos , Criança , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Citometria de Fluxo , Rearranjo Gênico , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética
17.
Clin Transl Oncol ; 26(1): 278-287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37368200

RESUMO

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is the most common cancer among children. Measurable residual disease (MRD, previously named minimal residual disease) study can guide therapy adjustments or preemptive interventions that might avoid hematological relapse. METHODS: Clinical decision making and patient outcome were evaluated in 80 real-life childhood ALL patients, according to the results observed in 544 bone marrow samples analyzed with three MRD methods: multiparametric flow cytometry (MFC), fluorescent in-situ hybridization (FISH) on B or T-purified lymphocytes and patient-specific nested reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Estimated 5 year overall survival and event-free survival were 94% and 84.1%, respectively. A total of 12 relapses in 7 patients were associated with positive MRD detection with at least one of the three methods: MFC (p < 0.00001), FISH (p < 0.00001) and RT-PCR (p = 0.013). MRD assessment allowed the anticipation of relapse and adapted early interventions with different approaches including chemotherapy intensification, blinatumomab, HSCT and targeted therapy to halt relapse in five patients, although two of them relapsed afterwards. CONCLUSION: MFC, FISH and RT-PCR are complementary methods for MRD monitoring in pediatric ALL. Although, our data clearly show that MDR positive detection is associated with relapse, continuation of standard treatment, intensification or other early interventions were able to halt relapse in patients with different risks and genetic background. More sensitive and specific methods are warranted to enhance this approach. However, whether early treatment of MRD can improve overall survival in patients with childhood ALL needs to be evaluated in adequately controlled clinical trials.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva , Citometria de Fluxo/métodos
18.
Gene ; 895: 147980, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951371

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous disease with poor survival compared to other subtypes. Patients with residual disease after neoadjuvant chemotherapy (NAC) face an increased risk of relapse and death. We aimed to characterize the mutational landscape of this subset to offer insights into relapse pathogenesis and potential therapeutic targets. We retrospectively analyzed archived paired (pre- and post-NAC) tumor samples from 25 patients with TNBC with residual disease using a targeted 72-gene next-generation sequencing panel. Our findings revealed a stable mutational burden in both pre- and post-NAC samples, with a median count of 12 variants (IQR 7-17.25) per sample. TP53, PMS2, PTEN, ERBB2, and NOTCH1 variants were observed in pre-NAC samples predominantly. Notably, post-NAC samples exhibited a significant increase in AR gene mutations, suggesting potential prognostic and predictive implications. No difference in mutational burden was found between patients who did and did not receive platinum (p = 0.94), or between those with and without recurrence (p = 0.49). We employed K-means clustering to categorize the patients based on their variant profiles, aiding in the prediction of possible patterns associated with recurrence. Our study was limited by its small sample size and retrospective design, suggesting the need for further validation in larger prospective cohorts.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Estudos Retrospectivos , Terapia Neoadjuvante , Estudos Prospectivos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasia Residual/genética , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/patologia , Mutação , Recidiva
19.
Cancer Res ; 84(3): 468-478, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038965

RESUMO

Circulating tumor DNA (ctDNA) may aid in personalizing ovarian cancer therapeutic options. Here, we aimed to assess the clinical utility of serial ctDNA testing using tumor-naïve, small-sized next-generation sequencing (NGS) panels. A total of 296 patients, including 201 with ovarian cancer and 95 with benign or borderline disease, were enrolled. Samples were collected at baseline (initial diagnosis or surgery) and every 3 months after that, resulting in a total of 811 blood samples. Patients received adjuvant therapy based on the current standard of care. Cell-free DNA was extracted and sequenced using an NGS panel of 9 genes: TP53, BRCA1, BRCA2, ARID1A, CCNE1, KRAS, MYC, PIK3CA, and PTEN. Pathogenic somatic mutations were identified in 69.2% (139/201) of patients with ovarian cancer at baseline but not in those with benign or borderline disease. Detection of ctDNA at baseline and/or at 6 months follow-up was predictive of progression-free survival (PFS). PFS was significantly poorer in patients with detectable pathogenic mutations at baseline that persisted at follow-up than in patients that converted from having detectable ctDNA at baseline to being undetectable at follow-up; survival did not differ between patients without pathogenic ctDNA mutations in baseline or follow-up samples and those that converted from ctDNA positive to negative. Disease recurrence was also detected earlier with ctDNA than with conventional radiologic assessment or CA125 monitoring. These findings demonstrate that serial ctDNA testing could effectively monitor patients and detect minimal residual disease, facilitating early detection of disease progression and tailoring of adjuvant therapies for ovarian cancer treatment. SIGNIFICANCE: In ovarian cancer, serial circulating tumor DNA testing is a highly predictive marker of patient survival, with a significantly improved recurrence detection lead time compared with conventional monitoring tools.


Assuntos
DNA Tumoral Circulante , Neoplasias Ovarianas , Humanos , Feminino , DNA Tumoral Circulante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores Tumorais/genética , Mutação
20.
Leukemia ; 38(1): 21-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001170

RESUMO

Measurable residual disease (MRD) monitoring in childhood acute myeloid leukemia (AML) is used to assess response to treatment and for early detection of imminent relapse. In childhood AML, MRD is typically evaluated using flow cytometry, or by quantitative detection of leukemia-specific aberrations at the mRNA level. Both methods, however, have significant limitations. Recently, we demonstrated the feasibility of MRD monitoring in selected subgroups of AML at the genomic DNA (gDNA) level. To evaluate the potential of gDNA-based MRD monitoring across all AML subtypes, we conducted a comprehensive analysis involving 133 consecutively diagnosed children. Integrating next-generation sequencing into the diagnostic process, we identified (presumed) primary genetic aberrations suitable as MRD targets in 97% of patients. We developed patient-specific quantification assays and monitored MRD in 122 children. The gDNA-based MRD monitoring via quantification of primary aberrations with a sensitivity of at least 10-4 was possible in 86% of patients; via quantification with sensitivity of 5 × 10-4, of secondary aberrations, or at the mRNA level in an additional 8%. Importantly, gDNA-based MRD exhibited independent prognostic value at early time-points in patients stratified to intermediate-/high-risk treatment arms. Our study demonstrates the broad applicability, feasibility, and clinical significance of gDNA-based MRD monitoring in childhood AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Criança , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Estudos de Coortes , Recidiva , Prognóstico , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Citometria de Fluxo , RNA Mensageiro/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...